
Extending the Salsa20 nonce

D. J. Bernstein

University of Illinois at Chicago

DES had 64-bit block.

Highly troublesome by 1990s.

AES has 128-bit block.

Becoming troublesome now : : :



Extending the Salsa20 nonce

D. J. Bernstein

University of Illinois at Chicago

DES had 64-bit block.

Highly troublesome by 1990s.

AES has 128-bit block.

Becoming troublesome now : : :

2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”



Extending the Salsa20 nonce

D. J. Bernstein

University of Illinois at Chicago

DES had 64-bit block.

Highly troublesome by 1990s.

AES has 128-bit block.

Becoming troublesome now : : :

2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”



Extending the Salsa20 nonce

D. J. Bernstein

University of Illinois at Chicago

DES had 64-bit block.

Highly troublesome by 1990s.

AES has 128-bit block.

Becoming troublesome now : : :

2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”



Extending the Salsa20 nonce

D. J. Bernstein

University of Illinois at Chicago

DES had 64-bit block.

Highly troublesome by 1990s.

AES has 128-bit block.

Becoming troublesome now : : :

2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”



Extending the Salsa20 nonce

D. J. Bernstein

University of Illinois at Chicago

DES had 64-bit block.

Highly troublesome by 1990s.

AES has 128-bit block.

Becoming troublesome now : : :

2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”

Why do they say this?

Answer: Their security proof

fails for #messages � 2n=2

(AES: #messages � 264),

and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.



Extending the Salsa20 nonce

D. J. Bernstein

University of Illinois at Chicago

DES had 64-bit block.

Highly troublesome by 1990s.

AES has 128-bit block.

Becoming troublesome now : : :

2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”

Why do they say this?

Answer: Their security proof

fails for #messages � 2n=2

(AES: #messages � 264),

and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.

Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.



Extending the Salsa20 nonce

D. J. Bernstein

University of Illinois at Chicago

DES had 64-bit block.

Highly troublesome by 1990s.

AES has 128-bit block.

Becoming troublesome now : : :

2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”

Why do they say this?

Answer: Their security proof

fails for #messages � 2n=2

(AES: #messages � 264),

and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.

Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.



Extending the Salsa20 nonce

D. J. Bernstein

University of Illinois at Chicago

DES had 64-bit block.

Highly troublesome by 1990s.

AES has 128-bit block.

Becoming troublesome now : : :

2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”

Why do they say this?

Answer: Their security proof

fails for #messages � 2n=2

(AES: #messages � 264),

and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.

Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.



2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”

Why do they say this?

Answer: Their security proof

fails for #messages � 2n=2

(AES: #messages � 264),

and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.

Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.



2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”

Why do they say this?

Answer: Their security proof

fails for #messages � 2n=2

(AES: #messages � 264),

and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.

Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.

In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.



2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”

Why do they say this?

Answer: Their security proof

fails for #messages � 2n=2

(AES: #messages � 264),

and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.

Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.

In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.



2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”

Why do they say this?

Answer: Their security proof

fails for #messages � 2n=2

(AES: #messages � 264),

and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.

Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.

In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.



Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.

In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.



Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.

In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.

Alert: User-designed cipher!

Is this cipher secure?



Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.

In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.

Alert: User-designed cipher!

Is this cipher secure?

Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.



Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.

In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.

Alert: User-designed cipher!

Is this cipher secure?

Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.



Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.

In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.

Alert: User-designed cipher!

Is this cipher secure?

Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.



In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.

Alert: User-designed cipher!

Is this cipher secure?

Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.



In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.

Alert: User-designed cipher!

Is this cipher secure?

Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.

Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.



In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.

Alert: User-designed cipher!

Is this cipher secure?

Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.

Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.



In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.

Alert: User-designed cipher!

Is this cipher secure?

Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.

Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.



Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.

Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.



Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.

Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.

2. “Use longer keys.”

Master key produces

256-bit output block,

used as 256-bit session key.

We have good 256-bit ciphers!



Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.

Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.

2. “Use longer keys.”

Master key produces

256-bit output block,

used as 256-bit session key.

We have good 256-bit ciphers!

I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.



Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.

Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.

2. “Use longer keys.”

Master key produces

256-bit output block,

used as 256-bit session key.

We have good 256-bit ciphers!

I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.



Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.

Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.

2. “Use longer keys.”

Master key produces

256-bit output block,

used as 256-bit session key.

We have good 256-bit ciphers!

I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.



Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.

2. “Use longer keys.”

Master key produces

256-bit output block,

used as 256-bit session key.

We have good 256-bit ciphers!

I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.



Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.

2. “Use longer keys.”

Master key produces

256-bit output block,

used as 256-bit session key.

We have good 256-bit ciphers!

I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.

But AES isn’t a great cipher:

� Small block, so distinguishable.

� Not much security margin.

� Uninspiring key schedule.

� Invites cache-timing attacks.

� Slow on most CPUs.

� Mediocre speed in hardware.

� Even slower with key expansion.



Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.

2. “Use longer keys.”

Master key produces

256-bit output block,

used as 256-bit session key.

We have good 256-bit ciphers!

I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.

But AES isn’t a great cipher:

� Small block, so distinguishable.

� Not much security margin.

� Uninspiring key schedule.

� Invites cache-timing attacks.

� Slow on most CPUs.

� Mediocre speed in hardware.

� Even slower with key expansion.

How about Salsa20?

� Large block; aims to be PRF.

� 150% security margin.

� Key at top, not on side.

� Naturally constant time.

� Fast across CPUs.

� Better than AES in hardware.

� No key expansion.

Can generate 256-bit k0 as

first 256 bits of Salsa20 stream

using 64-bit nonce n, key k.

Use k0 as Salsa20 session key.



Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.

2. “Use longer keys.”

Master key produces

256-bit output block,

used as 256-bit session key.

We have good 256-bit ciphers!

I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.

But AES isn’t a great cipher:

� Small block, so distinguishable.

� Not much security margin.

� Uninspiring key schedule.

� Invites cache-timing attacks.

� Slow on most CPUs.

� Mediocre speed in hardware.

� Even slower with key expansion.

How about Salsa20?

� Large block; aims to be PRF.

� 150% security margin.

� Key at top, not on side.

� Naturally constant time.

� Fast across CPUs.

� Better than AES in hardware.

� No key expansion.

Can generate 256-bit k0 as

first 256 bits of Salsa20 stream

using 64-bit nonce n, key k.

Use k0 as Salsa20 session key.



Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.

2. “Use longer keys.”

Master key produces

256-bit output block,

used as 256-bit session key.

We have good 256-bit ciphers!

I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.

But AES isn’t a great cipher:

� Small block, so distinguishable.

� Not much security margin.

� Uninspiring key schedule.

� Invites cache-timing attacks.

� Slow on most CPUs.

� Mediocre speed in hardware.

� Even slower with key expansion.

How about Salsa20?

� Large block; aims to be PRF.

� 150% security margin.

� Key at top, not on side.

� Naturally constant time.

� Fast across CPUs.

� Better than AES in hardware.

� No key expansion.

Can generate 256-bit k0 as

first 256 bits of Salsa20 stream

using 64-bit nonce n, key k.

Use k0 as Salsa20 session key.



I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.

But AES isn’t a great cipher:

� Small block, so distinguishable.

� Not much security margin.

� Uninspiring key schedule.

� Invites cache-timing attacks.

� Slow on most CPUs.

� Mediocre speed in hardware.

� Even slower with key expansion.

How about Salsa20?

� Large block; aims to be PRF.

� 150% security margin.

� Key at top, not on side.

� Naturally constant time.

� Fast across CPUs.

� Better than AES in hardware.

� No key expansion.

Can generate 256-bit k0 as

first 256 bits of Salsa20 stream

using 64-bit nonce n, key k.

Use k0 as Salsa20 session key.



I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.

But AES isn’t a great cipher:

� Small block, so distinguishable.

� Not much security margin.

� Uninspiring key schedule.

� Invites cache-timing attacks.

� Slow on most CPUs.

� Mediocre speed in hardware.

� Even slower with key expansion.

How about Salsa20?

� Large block; aims to be PRF.

� 150% security margin.

� Key at top, not on side.

� Naturally constant time.

� Fast across CPUs.

� Better than AES in hardware.

� No key expansion.

Can generate 256-bit k0 as

first 256 bits of Salsa20 stream

using 64-bit nonce n, key k.

Use k0 as Salsa20 session key.

Improvement #1:

Salsa20 is actually a function

producing 512-bit block from

256-bit key, 128-bit input.

Conventionally 128-bit input

is interpreted as 64-bit nonce

and 64-bit block counter

(so output blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.

Generate 256-bit k0

as half of 512-bit block.



I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.

But AES isn’t a great cipher:

� Small block, so distinguishable.

� Not much security margin.

� Uninspiring key schedule.

� Invites cache-timing attacks.

� Slow on most CPUs.

� Mediocre speed in hardware.

� Even slower with key expansion.

How about Salsa20?

� Large block; aims to be PRF.

� 150% security margin.

� Key at top, not on side.

� Naturally constant time.

� Fast across CPUs.

� Better than AES in hardware.

� No key expansion.

Can generate 256-bit k0 as

first 256 bits of Salsa20 stream

using 64-bit nonce n, key k.

Use k0 as Salsa20 session key.

Improvement #1:

Salsa20 is actually a function

producing 512-bit block from

256-bit key, 128-bit input.

Conventionally 128-bit input

is interpreted as 64-bit nonce

and 64-bit block counter

(so output blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.

Generate 256-bit k0

as half of 512-bit block.



I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.

But AES isn’t a great cipher:

� Small block, so distinguishable.

� Not much security margin.

� Uninspiring key schedule.

� Invites cache-timing attacks.

� Slow on most CPUs.

� Mediocre speed in hardware.

� Even slower with key expansion.

How about Salsa20?

� Large block; aims to be PRF.

� 150% security margin.

� Key at top, not on side.

� Naturally constant time.

� Fast across CPUs.

� Better than AES in hardware.

� No key expansion.

Can generate 256-bit k0 as

first 256 bits of Salsa20 stream

using 64-bit nonce n, key k.

Use k0 as Salsa20 session key.

Improvement #1:

Salsa20 is actually a function

producing 512-bit block from

256-bit key, 128-bit input.

Conventionally 128-bit input

is interpreted as 64-bit nonce

and 64-bit block counter

(so output blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.

Generate 256-bit k0

as half of 512-bit block.



How about Salsa20?

� Large block; aims to be PRF.

� 150% security margin.

� Key at top, not on side.

� Naturally constant time.

� Fast across CPUs.

� Better than AES in hardware.

� No key expansion.

Can generate 256-bit k0 as

first 256 bits of Salsa20 stream

using 64-bit nonce n, key k.

Use k0 as Salsa20 session key.

Improvement #1:

Salsa20 is actually a function

producing 512-bit block from

256-bit key, 128-bit input.

Conventionally 128-bit input

is interpreted as 64-bit nonce

and 64-bit block counter

(so output blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.

Generate 256-bit k0

as half of 512-bit block.



How about Salsa20?

� Large block; aims to be PRF.

� 150% security margin.

� Key at top, not on side.

� Naturally constant time.

� Fast across CPUs.

� Better than AES in hardware.

� No key expansion.

Can generate 256-bit k0 as

first 256 bits of Salsa20 stream

using 64-bit nonce n, key k.

Use k0 as Salsa20 session key.

Improvement #1:

Salsa20 is actually a function

producing 512-bit block from

256-bit key, 128-bit input.

Conventionally 128-bit input

is interpreted as 64-bit nonce

and 64-bit block counter

(so output blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.

Generate 256-bit k0

as half of 512-bit block.

Improvement #2:

Look more closely

at how Salsa20 works:

initializes 512-bit block

publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;

adds 256-bit key k.

Take k0 as the other 256 bits.

) Skip final k addition.

Important here that

block is much bigger than k.

Compare to Even–Mansour etc.



How about Salsa20?

� Large block; aims to be PRF.

� 150% security margin.

� Key at top, not on side.

� Naturally constant time.

� Fast across CPUs.

� Better than AES in hardware.

� No key expansion.

Can generate 256-bit k0 as

first 256 bits of Salsa20 stream

using 64-bit nonce n, key k.

Use k0 as Salsa20 session key.

Improvement #1:

Salsa20 is actually a function

producing 512-bit block from

256-bit key, 128-bit input.

Conventionally 128-bit input

is interpreted as 64-bit nonce

and 64-bit block counter

(so output blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.

Generate 256-bit k0

as half of 512-bit block.

Improvement #2:

Look more closely

at how Salsa20 works:

initializes 512-bit block

publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;

adds 256-bit key k.

Take k0 as the other 256 bits.

) Skip final k addition.

Important here that

block is much bigger than k.

Compare to Even–Mansour etc.



How about Salsa20?

� Large block; aims to be PRF.

� 150% security margin.

� Key at top, not on side.

� Naturally constant time.

� Fast across CPUs.

� Better than AES in hardware.

� No key expansion.

Can generate 256-bit k0 as

first 256 bits of Salsa20 stream

using 64-bit nonce n, key k.

Use k0 as Salsa20 session key.

Improvement #1:

Salsa20 is actually a function

producing 512-bit block from

256-bit key, 128-bit input.

Conventionally 128-bit input

is interpreted as 64-bit nonce

and 64-bit block counter

(so output blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.

Generate 256-bit k0

as half of 512-bit block.

Improvement #2:

Look more closely

at how Salsa20 works:

initializes 512-bit block

publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;

adds 256-bit key k.

Take k0 as the other 256 bits.

) Skip final k addition.

Important here that

block is much bigger than k.

Compare to Even–Mansour etc.



Improvement #1:

Salsa20 is actually a function

producing 512-bit block from

256-bit key, 128-bit input.

Conventionally 128-bit input

is interpreted as 64-bit nonce

and 64-bit block counter

(so output blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.

Generate 256-bit k0

as half of 512-bit block.

Improvement #2:

Look more closely

at how Salsa20 works:

initializes 512-bit block

publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;

adds 256-bit key k.

Take k0 as the other 256 bits.

) Skip final k addition.

Important here that

block is much bigger than k.

Compare to Even–Mansour etc.



Improvement #1:

Salsa20 is actually a function

producing 512-bit block from

256-bit key, 128-bit input.

Conventionally 128-bit input

is interpreted as 64-bit nonce

and 64-bit block counter

(so output blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.

Generate 256-bit k0

as half of 512-bit block.

Improvement #2:

Look more closely

at how Salsa20 works:

initializes 512-bit block

publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;

adds 256-bit key k.

Take k0 as the other 256 bits.

) Skip final k addition.

Important here that

block is much bigger than k.

Compare to Even–Mansour etc.

What about security?

Recall feasible 128-bit attack.

Moving from 128 bits to 256 bits

puts attack very far out of reach.

Could there be better attacks?

1996 Bellare–Canetti–Krawczyk:

Can convert any q-query attack

into similarly efficient single-key

attack on original cipher, losing

factor � 2q in success probability.

Warning: FOCS 1996

“theorem” omits factor q.

Corrected in 2005 online version.



Improvement #1:

Salsa20 is actually a function

producing 512-bit block from

256-bit key, 128-bit input.

Conventionally 128-bit input

is interpreted as 64-bit nonce

and 64-bit block counter

(so output blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.

Generate 256-bit k0

as half of 512-bit block.

Improvement #2:

Look more closely

at how Salsa20 works:

initializes 512-bit block

publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;

adds 256-bit key k.

Take k0 as the other 256 bits.

) Skip final k addition.

Important here that

block is much bigger than k.

Compare to Even–Mansour etc.

What about security?

Recall feasible 128-bit attack.

Moving from 128 bits to 256 bits

puts attack very far out of reach.

Could there be better attacks?

1996 Bellare–Canetti–Krawczyk:

Can convert any q-query attack

into similarly efficient single-key

attack on original cipher, losing

factor � 2q in success probability.

Warning: FOCS 1996

“theorem” omits factor q.

Corrected in 2005 online version.



Improvement #1:

Salsa20 is actually a function

producing 512-bit block from

256-bit key, 128-bit input.

Conventionally 128-bit input

is interpreted as 64-bit nonce

and 64-bit block counter

(so output blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.

Generate 256-bit k0

as half of 512-bit block.

Improvement #2:

Look more closely

at how Salsa20 works:

initializes 512-bit block

publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;

adds 256-bit key k.

Take k0 as the other 256 bits.

) Skip final k addition.

Important here that

block is much bigger than k.

Compare to Even–Mansour etc.

What about security?

Recall feasible 128-bit attack.

Moving from 128 bits to 256 bits

puts attack very far out of reach.

Could there be better attacks?

1996 Bellare–Canetti–Krawczyk:

Can convert any q-query attack

into similarly efficient single-key

attack on original cipher, losing

factor � 2q in success probability.

Warning: FOCS 1996

“theorem” omits factor q.

Corrected in 2005 online version.



Improvement #2:

Look more closely

at how Salsa20 works:

initializes 512-bit block

publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;

adds 256-bit key k.

Take k0 as the other 256 bits.

) Skip final k addition.

Important here that

block is much bigger than k.

Compare to Even–Mansour etc.

What about security?

Recall feasible 128-bit attack.

Moving from 128 bits to 256 bits

puts attack very far out of reach.

Could there be better attacks?

1996 Bellare–Canetti–Krawczyk:

Can convert any q-query attack

into similarly efficient single-key

attack on original cipher, losing

factor � 2q in success probability.

Warning: FOCS 1996

“theorem” omits factor q.

Corrected in 2005 online version.



Improvement #2:

Look more closely

at how Salsa20 works:

initializes 512-bit block

publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;

adds 256-bit key k.

Take k0 as the other 256 bits.

) Skip final k addition.

Important here that

block is much bigger than k.

Compare to Even–Mansour etc.

What about security?

Recall feasible 128-bit attack.

Moving from 128 bits to 256 bits

puts attack very far out of reach.

Could there be better attacks?

1996 Bellare–Canetti–Krawczyk:

Can convert any q-query attack

into similarly efficient single-key

attack on original cipher, losing

factor � 2q in success probability.

Warning: FOCS 1996

“theorem” omits factor q.

Corrected in 2005 online version.

Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.



Improvement #2:

Look more closely

at how Salsa20 works:

initializes 512-bit block

publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;

adds 256-bit key k.

Take k0 as the other 256 bits.

) Skip final k addition.

Important here that

block is much bigger than k.

Compare to Even–Mansour etc.

What about security?

Recall feasible 128-bit attack.

Moving from 128 bits to 256 bits

puts attack very far out of reach.

Could there be better attacks?

1996 Bellare–Canetti–Krawczyk:

Can convert any q-query attack

into similarly efficient single-key

attack on original cipher, losing

factor � 2q in success probability.

Warning: FOCS 1996

“theorem” omits factor q.

Corrected in 2005 online version.

Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.



Improvement #2:

Look more closely

at how Salsa20 works:

initializes 512-bit block

publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;

adds 256-bit key k.

Take k0 as the other 256 bits.

) Skip final k addition.

Important here that

block is much bigger than k.

Compare to Even–Mansour etc.

What about security?

Recall feasible 128-bit attack.

Moving from 128 bits to 256 bits

puts attack very far out of reach.

Could there be better attacks?

1996 Bellare–Canetti–Krawczyk:

Can convert any q-query attack

into similarly efficient single-key

attack on original cipher, losing

factor � 2q in success probability.

Warning: FOCS 1996

“theorem” omits factor q.

Corrected in 2005 online version.

Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.



What about security?

Recall feasible 128-bit attack.

Moving from 128 bits to 256 bits

puts attack very far out of reach.

Could there be better attacks?

1996 Bellare–Canetti–Krawczyk:

Can convert any q-query attack

into similarly efficient single-key

attack on original cipher, losing

factor � 2q in success probability.

Warning: FOCS 1996

“theorem” omits factor q.

Corrected in 2005 online version.

Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.



What about security?

Recall feasible 128-bit attack.

Moving from 128 bits to 256 bits

puts attack very far out of reach.

Could there be better attacks?

1996 Bellare–Canetti–Krawczyk:

Can convert any q-query attack

into similarly efficient single-key

attack on original cipher, losing

factor � 2q in success probability.

Warning: FOCS 1996

“theorem” omits factor q.

Corrected in 2005 online version.

Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.

2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?



What about security?

Recall feasible 128-bit attack.

Moving from 128 bits to 256 bits

puts attack very far out of reach.

Could there be better attacks?

1996 Bellare–Canetti–Krawczyk:

Can convert any q-query attack

into similarly efficient single-key

attack on original cipher, losing

factor � 2q in success probability.

Warning: FOCS 1996

“theorem” omits factor q.

Corrected in 2005 online version.

Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.

2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?



What about security?

Recall feasible 128-bit attack.

Moving from 128 bits to 256 bits

puts attack very far out of reach.

Could there be better attacks?

1996 Bellare–Canetti–Krawczyk:

Can convert any q-query attack

into similarly efficient single-key

attack on original cipher, losing

factor � 2q in success probability.

Warning: FOCS 1996

“theorem” omits factor q.

Corrected in 2005 online version.

Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.

2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?



Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.

2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?



Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.

2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?

No! 1996 Biham “key collisions”

break 240-user 1-level AES

in exactly the same way.

Traditional 1-user metric:

Breaking AES using q queries

costs 2128 by best attack known.

Biham’s multi-user metric:

2128=q by best attack known.



Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.

2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?

No! 1996 Biham “key collisions”

break 240-user 1-level AES

in exactly the same way.

Traditional 1-user metric:

Breaking AES using q queries

costs 2128 by best attack known.

Biham’s multi-user metric:

2128=q by best attack known.

Loss factor � 2 between

2-level AES and 1-level AES

in this multi-user metric.



Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.

2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?

No! 1996 Biham “key collisions”

break 240-user 1-level AES

in exactly the same way.

Traditional 1-user metric:

Breaking AES using q queries

costs 2128 by best attack known.

Biham’s multi-user metric:

2128=q by best attack known.

Loss factor � 2 between

2-level AES and 1-level AES

in this multi-user metric.



Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.

2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?

No! 1996 Biham “key collisions”

break 240-user 1-level AES

in exactly the same way.

Traditional 1-user metric:

Breaking AES using q queries

costs 2128 by best attack known.

Biham’s multi-user metric:

2128=q by best attack known.

Loss factor � 2 between

2-level AES and 1-level AES

in this multi-user metric.



Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.

2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?

No! 1996 Biham “key collisions”

break 240-user 1-level AES

in exactly the same way.

Traditional 1-user metric:

Breaking AES using q queries

costs 2128 by best attack known.

Biham’s multi-user metric:

2128=q by best attack known.

Loss factor � 2 between

2-level AES and 1-level AES

in this multi-user metric.



2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?

No! 1996 Biham “key collisions”

break 240-user 1-level AES

in exactly the same way.

Traditional 1-user metric:

Breaking AES using q queries

costs 2128 by best attack known.

Biham’s multi-user metric:

2128=q by best attack known.

Loss factor � 2 between

2-level AES and 1-level AES

in this multi-user metric.


