Extending the Salsa20 nonce
D. J. Bernstein

University of lllinois at Chicago

DES had 64-bit block.
Highly troublesome by 1990s.

AES has 128-bit block.
Becoming troublesome now ...



Extending the Salsa20 nonce
D. J. Bernstein

University of lllinois at Chicago

DES had 64-bit block.
Highly troublesome by 1990s.

AES has 128-bit block.
Becoming troublesome now . ..

2006 BI:
Krawczy
“The nu
to be co
session .
allowed



Extending the Salsa20 nonce
D. J. Bernstein

University of lllinois at Chicago

DES had 64-bit block.
Highly troublesome by 1990s.

AES has 128-bit block.
Becoming troublesome now ...

2006 Black—Halev
Krawczyk—Krovetz
“The number of n
to be communicat
session ... should
allowed to approac



Extending the Salsa20 nonce
D. J. Bernstein

University of lllinois at Chicago

DES had 64-bit block.
Highly troublesome by 1990s.

AES has 128-bit block.
Becoming troublesome now . ..

2006 Black—Halevi—Hevia—
Krawczyk—Krovetz—Rogaway
“The number of messages
to be communicated in a
session ... should not be
allowed to approach on/2



Extending the Salsa20 nonce
D. J. Bernstein

University of lllinois at Chicago

DES had 64-bit block.
Highly troublesome by 1990s.

AES has 128-bit block.
Becoming troublesome now ...

2006 Black—Halevi—Hevia—
Krawczyk—Krovetz—Rogaway:
“The number of messages
to be communicated in a
session ... should not be
allowed to approach on/2



Extending the Salsa20 nonce
D. J. Bernstein

University of lllinois at Chicago

DES had 64-bit block.
Highly troublesome by 1990s.

AES has 128-bit block.
Becoming troublesome now ...

2006 Black—Halevi—Hevia—

Krawczyk—Krovetz—Rogaway:
“The number of messages
to be communicated in a
session ... should not be
allowed to approach on/2

Why do they say this?
Answer: Their security proof
fails for #messages = 2"/2
(AES: #messages ~ 204),
and becomes quantitatively

useless long before that.

So what should users do?
No advice from 2006 BHHKKR.



g the Salsa20 nonce
rnstein

ty of lllinois at Chicago

1 64-bit block.
roublesome by 1990s.

, 128-bit block.
g troublesome now . ..

2006 Black—Halevi—Hevia—
Krawczyk—Krovetz—Rogaway:
“The number of messages
to be communicated in a
session ... should not be
allowed to approach on/2

Why do they say this?
Answer: Their security proof
fails for #messages = 21/2
(AES: #messages ~ 204),
and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.

Commot

128-bit
produce:

First ses
Second
etc.

Each ses

for limit

Typical
AES-CT
for at m



a20 nonce

is at Chicago

ock.
e by 1990s.

lock.

OME NOW . ..

2006 Black—Halevi—Hevia—
Krawczyk—Krovetz—Rogaway:
“The number of messages
to be communicated in a
session ... should not be
allowed to approach on/2

Why do they say this?
Answer: Their security proof
fails for #messages = 21/2
(AES: #messages ~ 204),
and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.

Common user resy

128-bit “master” |,
produces 128-bit °

First session key:
Second session ke
etc.

Each session key &

for limited #mess.

Typical use of ses:s
AES-CTR, GCM,
for at most (e.g.)



(v

g0

2006 Black—Halevi—Hevia—
Krawczyk—Krovetz—Rogaway:
“The number of messages
to be communicated in a
session ... should not be
allowed to approach on/2

Why do they say this?
Answer: Their security proof
fails for #messages = 21/2
(AES: #messages ~ 204),
and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.

Common user response: Rel

128-bit “master” AES key £
produces 128-bit “session ke

First session key: AES.(1).
Second session key: AES,(Z
etc.

Each session key k' is used

for limited #£messages.

Typical use of session key:

AES-CTR, GCM, etc.
for at most (e.g.) 2*Y block:



2006 Black—Halevi—Hevia—

Krawczyk—Krovetz—Rogaway:
“The number of messages
to be communicated in a
session ... should not be
allowed to approach on/2

Why do they say this?
Answer: Their security proof
fails for #messages = 21/2
(AES: #messages ~ 204),
and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.

Common user response: Rekeying.

128-bit “master” AES key &
produces 128-bit “session keys" .

First session key: AES.(1).
Second session key: AES.(2).
etc.

Each session key k' is used

for limited #£messages.

Typical use of session key:
AES-CTR, GCM, etc.

for at most (e.g.) 2*Y blocks.



1ck—Halevi—Hevia—
k—Krovetz—Rogaway:
mber of messages
mmunicated In a

. should not be
to approach on/2

they say this?

Their security proof
#messages rs 2M/2
‘messages =z 2°4),
omes quantitatively
ong before that.

should users do?

e from 2006 BHHKKR.

Common user response: Rekeying.

128-bit “master” AES key &
produces 128-bit “session keys" .

First session key: AES.(1).
Second session key: AES,(2).

etc.

Each session key k' is used

for limited #£messages.

Typical use of session key:

AES-CTR, GCM, etc.
for at most (e.g.) 2*Y blocks.

In other

128-bit ,
AESAE&I
AESAEs,
AESAE&I
and so ¢

Thisisr
(m,n) +
with a d



—Hevia—
—Rogaway:
1essages

ed In a

not be
h 2n/2 "

his?

urity proof
s ny 2M/2

~ 264)
ititatively
» that.

sers do”?

06 BHHKKR.

Common user response: Rekeying.

128-bit “master” AES key &
produces 128-bit “session keys" .

First session key: AES.(1).
Second session key: AES.(2).

etc.

Eac
for

h session key k' is used

imited #messages.

Typical use of session key:

AES-CTR, GCM, etc.
for at most (e.g.) 2*Y blocks.

In other words:

128-bit AES key £
AESags, (1)(1), Al
AESags, (2)(1), Al

AESAEs, (3)(1). Al
and so on.

This is really a ne
(m, n) > AESAES
with a double-size



KR.

Common user response: Rekeying.

128-bit “master” AES key &
produces 128-bit “session keys" .

First session key: AES.(1).
Second session key: AES,(2).

etc.

Eac
for

h session key k' is used

imited #messages.

Typical use of session key:

AES-CTR, GCM, etc.
for at most (e.g.) 2*Y blocks.

In other words:

128-bit AES key k£ produces
AESAEs, (1)(1), AESAES, (1)
AESAEs, (2)(1), AESAES, (2)f

AESpEs, (3)(1), AESAES, (3)(
and so on.

This is really a new cipher
(m,n) = AESAEs, (m)(7)
with a double-size input.



Common user response: Rekeying.

128-bit “master” AES key &
produces 128-bit “session keys" .

First session key: AES.(1).
Second session key: AES.(2).

etc.

Eac
for

h session key k' is used

imited #messages.

Typical use of session key:

AES-CTR, GCM, etc.
for at most (e.g.) 2*Y blocks.

In other words:

128-bit AES key k& produces

AESags, (1)(1), AESpEs, (1)(2). -
AESags, (2)(1), AESpEs, (2)(2). - -
AESaEs, (3)(1), AESAEs, (3)(2), - -

and so on.

This is really a new cipher
(m.n) — AESAgs, (m)(7)
with a double-size input.



Common user response: Rekeying.

128-bit “master” AES key &
produces 128-bit “session keys" .

First session key: AES.(1).
Second session key: AES.(2).

etc.

Eac
for

h session key k' is used

imited #messages.

Typical use of session key:
AES-CTR, GCM, etc.

for at most (e.g.) 2*Y blocks.

In other words:

128-bit AES key k& produces

AESags, (1)(1), AESpEs, (1)(2). -
AESags, (2)(1), AESpEs, (2)(2). - -
AESaes, (3)(1), AESpEs, (3)(2). - -

and so on.

This is really a new cipher
(m.n) — AESAgs, (m)(7)
with a double-size input.

Alert: User-designed cipher!
Is this cipher secure?



1 user response: Rekeying.

“master” AES key k
5 128-bit “session keys' .

sion key: AES,(1).
session key: AES;(2).

sion key k' is used
ed #messages.

use of session key:
R, GCM, etc.
ost (e.g.) 2*Y blocks.

In other words:

128-bit AES key & produces

AESags, (1)(1), AESpEs, (1)(2). -
AESags, (2)(1), AESpEs, (2)(2). - -
AESaes, (3)(1), AESpEs, (3)(2). - -

and so on.

This is really a new cipher
(m,n) = AESAEs, (m)(7)
with a double-size input.

Alert: User-designed cipher!
Is this cipher secure?

Not real

Collect ¢

for 240

Build 2%
each cor

Iiterates

Good ch
k' = AE
Find via
Then tri
AESAEs

Current
< 1 yeal



onse: Rekeying.

AES key &
'session keys' .

AES,(1).
/. AES.(2).

' Is used

ages.

ion key:
etC.
240 blocks.

In other words:

128-bit AES key & produces

AESags, (1)(1), AESpEs, (1)(2). -
AESags, (2)(1), AESpEs, (2)(2). -
AESaEs, (3)(1), AESAEs, (3)(2), -

and so on.

This is really a new cipher
(m.n) — AESAgs, (m)(7)
with a double-size input.

Alert: User-designed cipher!
Is this cipher secure?

Not really. Feasibl

Collect AESpEs (+

240

for inputs (7, !

Build 240 tiny sea
each computing 2’
iterates of k&' — A
Good chance of c«
k' = AES/C(?’L) for
Find via distinguis
Then trivially com
AESAEs, (n)(1) et

Current chip techr
< 1 year, < 1010



eying.

S

In other words:

128-bit AES key & produces

AESAgs, (1)(1), AESpEs, (1)(2). -
AESags, (2)(1), AESpEs, (2)(2). - -
AESpEs, (3)(1), AESAEs, (3)(2), - -

and so on.

This is really a new cipher

(m, n) = AESAgs, (m)(n)
with a double-size input.

Alert: User-designed cipher!
Is this cipher secure?

Not really. Feasible attack:

Collect AESAEs, (r)(0)

240

for inputs (n,0).

Build 249 tiny search units,

each computing 243

iterates of &' — AES,/(0).
Good chance of collision

k' = AES(n) for some n, k
Find via distinguished point:
Then trivially compute
AESpEs, (n)(1) etc.

Current chip technology:
< 1 year, < 1010 USD.



In other words:

128-bit AES key & produces

AESags, (1)(1), AESpEs, (1)(2). -
AESags, (2)(1), AESpEs, (2)(2). - -
AESaEs, (3)(1), AESAEs, (3)(2), - -

and so on.

This is really a new cipher
(m.n) — AESAgs, (m)(7)
with a double-size input.

Alert: User-designed cipher!
Is this cipher secure?

Not really. Feasible attack:

Collect AESAESk(n) (O)

240

for inputs (n,0).

Build 24V tiny search units,

each computing 243

iterates of &' — AES,/(0).
Good chance of collision
k' = AES(n) for some n, k'
Find via distinguished points.
Then trivially compute
AESAEs, (n)(1) etc.

Current chip technology:
< 1 year, < 1010 USD.



words:

AES key k£ produces

(1)(1), AESAEs, (1)(2), -
(2)(1), AESAEs (2)(2), - -;
(3)(1), AESAEs, (3)(2), - -
N.

eally a new cipher

= AESAESk(m) (n)
ouble-size Iinput.

ser-designed cipher!
pher secure?

Not really. Feasible attack:

Collect AESAEs, (r)(0)

240

for inputs (n,0).

Build 249 tiny search units,

each computing 243

iterates of &' — AES,/(0).
Good chance of collision

k' = AES(n) for some n, k'
Find via distinguished points.

Then trivially compute
AESAES;C (].) etc.

Current chip technology:
< 1 year, < 1010 USD.

Two diff
stopping

1. “Use
Attack r
same Inj
by many

.butr
leaves
and rais



- produces

ESAESk(l)(Q), C ey
“SAES,(2)(2), -
=SAES,(3)(2), -

N cipher
(m)(1n)
Input.

ed cipher!
e’

Not really. Feasible attack:

Collect AESAESk(n)(O)
for 240 inputs (n, 0).

Build 24V tiny search units,
each computing 243

iterates of &' — AES,/(0).
Good chance of collision

k' = AES(n) for some n, k'
Find via distinguished points.

Then trivially compute
AESAESk(n)(l) etc.

Current chip technology:
< 1 year, < 1010 USD.

Two different phil
stopping this type

1. “Use random n
Attack relies critic
same Iinput O bein
by many session k
... but randomizat
leaves many secur
and raises usabilit



Not really. Feasible attack:

Collect AESAESk(n)(O)
for 240 inputs (7, 0).

Build 249 tiny search units,

each computing 243

iterates of &' — AES,/(0).
Good chance of collision

k' = AES(n) for some n, k'
Find via distinguished points.

Then trivially compute
AESAES;C (].) etc.

Current chip technology:
< 1 year, < 1010 USD.

Two different philosophies f
stopping this type of attack:

1. “Use random nonces.”
Attack relies critically on
same input O being encrypte
by many session keys k.

.. but randomization still
leaves many security questic
and raises usability question



Not really. Feasible attack:

Collect AESAESk(n)(O)
for 240 inputs (n, 0).

Build 24V tiny search units,

each computing 243

iterates of &' — AES,/(0).
Good chance of collision

k' = AES(n) for some n, k'
Find via distinguished points.

Then trivially compute
AESAESk(n)(l) etc.

Current chip technology:
< 1 year, < 1010 USD.

Two different philosophies for
stopping this type of attack:

1. “Use random nonces.”
Attack relies critically on
same input 0 being encrypted
by many session keys k'.

... but randomization still
leaves many security questions
and raises usability questions.



Not really. Feasible attack:

Collect AESAESk(n)(O)
for 240 inputs (n, 0).

Build 24V tiny search units,

each computing 243

iterates of &' — AES,/(0).
Good chance of collision

k' = AES(n) for some n, k'
Find via distinguished points.

Then trivially compute
AESAESk(n)(l) etc.

Current chip technology:
< 1 year, < 1010 USD.

Two different philosophies for
stopping this type of attack:

1. “Use random nonces.”
Attack relies critically on
same input 0 being encrypted
by many session keys k'.

... but randomization still
leaves many security questions
and raises usability questions.

2. "Use longer keys.”
Master key produces
256-bit output block,
used as 256-bit session key.

We have good 256-bit ciphers!



ly. Feasible attack:

B‘ESAES/C(TZ) (O)
nputs (n, 0).

O tiny search units,
nputing 243
of /CI —> AESkl(O)

ance of collision

Si(n) for some n, k'
distinguished points.

vially compute
(n) (1) etc.

chip technology:
, < 1010 USD.

Two different philosophies for
stopping this type of attack:

1. “Use random nonces.”
Attack relies critically on
same Input 0 being encrypted
by many session keys k.

... but randomization still
leaves many security questions
and raises usability questions.

2. "Use longer keys.”
Master key produces
256-bit output block,
used as 256-bit session key.

We have good 256-bit ciphers!

I'll focus

Could g
k' = (Al
Use k' 3



e attack:

L)(O)
0).

ch units,
18

ESk;(O).
llision

some n. k'
hed points.

pute

10logy:
JSD.

Two different philosophies for
stopping this type of attack:

1. “Use random nonces.”
Attack relies critically on
same Input 0 being encrypted
by many session keys £'.

... but randomization still
leaves many security questions
and raises usability questions.

2. "Use longer keys.”
Master key produces
256-bit output block,
used as 256-bit session key.

We have good 256-bit ciphers!

I'll focus on strate

Could generate 25
k' = (AES,(2n), £
Use £’ as key for :



Two different philosophies for
stopping this type of attack:

1. “Use random nonces.”
Attack relies critically on
same Input 0 being encrypted
by many session keys k.

... but randomization still
leaves many security questions
and raises usability questions.

2. "Use longer keys.”
Master key produces
256-bit output block,
used as 256-bit session key.

We have good 256-bit ciphers!

I'll focus on strategy #2.

Could generate 256-bit
k' = (AES;C(Q?’Z.), AESk(2n n
Use k' as key for 256-bit AE



Two different philosophies for
stopping this type of attack:

1. “Use random nonces.”
Attack relies critically on
same input 0 being encrypted
by many session keys £'.

... but randomization still
leaves many security questions
and raises usability questions.

2. "Use longer keys.”
Master key produces
256-bit output block,
used as 256-bit session key.

We have good 256-bit ciphers!

I'll focus on strategy #2.

Could generate 256-bit
k' = (AES,(2n), AES,(2n + 1)).
Use k' as key for 256-bit AES.



Two different philosophies for
stopping this type of attack:

1. “Use random nonces.”
Attack relies critically on
same input 0 being encrypted
by many session keys £'.

... but randomization still
leaves many security questions
and raises usability questions.

2. "Use longer keys.”
Master key produces
256-bit output block,
used as 256-bit session key.

We have good 256-bit ciphers!

I'll focus on strategy #2.

Could generate 256-bit
k' = (AES,(2n), AES,(2n + 1)).
Use k' as key for 256-bit AES.

But AES isn't a great cipher:
e Small block, so distinguishable.
e Not much security margin.

e Uninspiring key schedule.

e Invites cache-timing attacks.
e Slow on most CPUs.

e Mediocre speed in hardware.
e Even slower with key expansion.



erent philosophies for
this type of attack:

random nonces.”

elies critically on

out 0 being encrypted
' session keys k',
andomization still
any security questions
2s usability questions.

longer keys.”

ey produces

output block,

256-bit session key.

> good 256-bit ciphers!

I'll focus on strategy #2.

Could generate 256-bit
k' = (AES,(2n), AES,(2n + 1)).
Use k' as key for 256-bit AES.

But AES isn't a great cipher:
e Small block, so distinguishable.
e Not much security margin.

e Uninspiring key schedule.

e Invites cache-timing attacks.
e Slow on most CPUs.

e Mediocre speed In hardware.

e Even slower with key expansion.

How ab«
e Large
e 150%
e Key af
o Natur:
e [ast a
e Better
e No ke

Can gen
first 256
using 64
Use k' a



osophies for
of attack:

onces.”

ally on

o encrypted
eys k'

on still

ity questions
/ questions.

/S.

ck,
ssion key.
)-bit ciphers!

I'll focus on strategy #2.

Could generate 256-bit
k' = (AES,(2n), AES,(2n + 1)).
Use k' as key for 256-bit AES.

But AES isn't a great cipher:
e Small block, so distinguishable.
e Not much security margin.

e Uninspiring key schedule.

e Invites cache-timing attacks.
e Slow on most CPUs.

e Mediocre speed in hardware.

e Even slower with key expansion.

How about Salsa?2
e Large block; ain
e 150% security
e Key at top, not
e Naturally consta
e Fast across CPL
e Better than AES
e No key expansio

Can generate 256-
first 256 bits of S:
using 64-bit nonce
Use k' as Salsa20



or

rrS!

I'll focus on strategy #2.

Could generate 256-bit
k' = (AES,(2n), AES,(2n + 1)).
Use k' as key for 256-bit AES.

But AES isn't a great cipher:
e Small block, so distinguishable.
e Not much security margin.

e Uninspiring key schedule.

e Invites cache-timing attacks.
e Slow on most CPUs.

e Mediocre speed In hardware.

e Even slower with key expansion.

How about Salsa207?

e | arge block; aims to be P
e 150% security margin.

e Key at top, not on side.

e Naturally constant time.

e Fast across CPUs.

e Better than AES in hardw
e No key expansion.

Can generate 256-bit £’ as

first 256 bits of Salsa20 stre
using 64-bit nonce n, key k.
Use k' as Salsa20 session ke



I'll focus on strategy #2.

Could generate 256-bit
k' = (AES,(2n), AES,(2n + 1)).
Use k' as key for 256-bit AES.

But AES isn't a great cipher:
e Small block, so distinguishable.
e Not much security margin.

e Uninspiring key schedule.

e Invites cache-timing attacks.
e Slow on most CPUs.

e Mediocre speed in hardware.

e Even slower with key expansion.

How about Salsa207?

e | arge block; aims to be PRF.
e 150% security margin.

e Key at top, not on side.

e Naturally constant time.

e Fast across CPUs.

e Better than AES in hardware.
e No key expansion.

Can generate 256-bit k£’ as
first 256 bits of Salsa20 stream
using 64-bit nonce n, key k.
Use &' as Salsa20 session key.



, on strategy #2.

nerate 256-bit
=S, (2n), AES,(2n + 1)).
s key for 256-bit AES.

> isn't a great cipher:
block, so distinguishable.
uch security margin.
iring key schedule.

. cache-timing attacks.

)n most CPUs.

cre speed In hardware.

lower with key expansion.

How about Salsa207?

e | arge block; aims to be PRF.

e 150% security margin.

e Key at top, not on side.
e Naturally constant time.
e Fast across CPUs.

e Better than AES in hardware.

e No key expansion.

Can generate 256-bit £’ as
first 256 bits of Salsa20 stream
using 64-bit nonce n, key k.
Use £’ as Salsa20 session key.

Improve

Salsa20
producir
256-bit |

Convent
IS Interp
and 64-t
(so outp
but func
to be fa:

giving re

So allow
Generat:
as half c



gy 2.

0-bit
\ES;.(2n + 1)).
)56-bit AES.

reat cipher:
distinguishable.
ty margin.
schedule.

1ing attacks.

PUs.
In hardware.

1 key expansion.

How about Salsa207?

e | arge block; aims to be PRF.

e 150% security margin.

e Key at top, not on side.
e Naturally constant time.
e Fast across CPUs.

e Better than AES in hardware.

e No key expansion.

Can generate 256-bit k' as
first 256 bits of Salsa20 stream
using 64-bit nonce n, key k.
Use £’ as Salsa20 session key.

Improvement #1:

Salsa20 is actually
producing 512-bit
256-bit key, 128-b

Conventionally 12
IS Interpreted as 6.
and 64-bit block ¢

(so output blocks

but function is des
to be fast and sec
giving random acc

So allow 128 bits
Generate 256-bit /
as half of 512-bit



nsion.

How about Salsa207?

e L arge block; aims to be PRF.

e 150% security margin.

e Key at top, not on side.
e Naturally constant time.
e Fast across CPUs.

e Better than AES in hardware.

e No key expansion.

Can generate 256-bit £’ as
first 256 bits of Salsa20 stream
using 64-bit nonce n, key k.
Use £’ as Salsa20 session key.

Improvement #1:

Salsa20 is actually a functio
producing 512-bit block fror
256-bit key, 128-bit input.

Conventiona

IS Interpretec
and 64-bit b

ly 128-
as 04-

oIt Input

0It honc

ock counter

(so output b

ocks are a stre:

but function is designed

to be fast and secure

giving random access to blo

So allow 128 bits in n.
Generate 256-bit k'
as half of 512-bit block.



How about Salsa207?

e | arge block; aims to be PRF.

e 150% security margin.

e Key at top, not on side.
e Naturally constant time.
e Fast across CPUs.

e Better than AES in hardware.

e No key expansion.

Can generate 256-bit k' as
first 256 bits of Salsa20 stream
using 64-bit nonce n, key k.
Use &' as Salsa20 session key.

Improvement #1:

Salsa20 is actually a function
producing 512-bit block from
256-bit key, 128-bit input.

Conventionally 128-bit input

IS Interpreted as 64-bit nonce

and 064-bit block counter

(so output blocks are a stream),
but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.
Generate 256-bit k'
as half of 512-bit block.



yut Salsa207?

block: aims to be PRF.

security margin.
- top, not on side.

|ly constant time.
cross CPUs.

‘than AES in hardware.

y expansion.

erate 256-bit £’ as

bits of Salsa20 stream
-bit nonce n, key k.

s Salsa20 session key.

Improvement #1:

Salsa20 is actually a function
producing 512-bit block from
256-bit key, 128-bit input.

Conventionally 128-bit input

IS Interpreted as 64-bit nonce
and 64-bit block counter

(so output blocks are a stream),
but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.
Generate 256-bit k'
as half of 512-bit block.

Improve

Look mc
at how
initialize
publicly
adds 25¢
applies r
adds 25¢

Take k'
= Skip

Importal
block Is
Compare



07

1s to be PRF.

1argin.
on side.
nt time.
s.

y in hardware.

n.

bit £’ as
11sa20 stream
' n, key k.
session key.

Improvement #1:

Salsa20 is actually a function
producing 512-bit block from
256-bit key, 128-bit input.

Conventionally 128-bit input

IS Interpreted as 64-bit nonce

and 064-bit block counter

(so output blocks are a stream),
but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.
Generate 256-bit k'
as half of 512-bit block.

Improvement #2:

Look more closely
at how Salsa20 wc
initializes 512-bit |
publicly from inpu
adds 256-bit key &
applies many unke
adds 256-bit key A

Take k' as the otf
— Skip final k£ ad

Important here th:
block Is much big;
Compare to Even-



RF.

dre.

Improvement #1:

Salsa20 is actually a function

producing 512-bit block from
256-bit key, 128-bit input.

Conventiona

IS Interpretec

and 64-bit
(so output

D

ly 128-bit input
as 04-bit nonce

ock counter

D

ocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.
Generate 256-bit k'
as half of 512-bit block.

Improvement #2:

ook more closely

at how Salsa20 works:
initializes 512-bit block
publicly from input n;

adds 256-bit key £;

applies many unkeyed round
adds 256-bit key £.

Take k' as the other 256 bit
= Skip final £ addition.

Important here that
block is much bigger than &
Compare to Even—Mansour



Improvement #1:

Salsa20 is actually a function

producing 512-bit block from
256-bit key, 128-bit input.

Conventionally 128-bit input

IS Interpreted as 64-bit nonce

and 64-bit
(so output

block counter

blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.
Generate 256-bit k'
as half of 512-bit block.

Improvement #2:

Look more closely

at how Salsa20 works:
initializes 512-bit block
publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;
adds 256-bit key £.

Take k' as the other 256 bits.
= Skip final k£ addition.

Important here that
block Is much bigger than &.
Compare to Even—Mansour etc.



ment #1:

Is actually a function
g 512-bit block from

ey, 128-bit input.

lona
reteg
it b

ly 128-
as 04-

oIt Input

OIt nonce

ock counter

ut b

ocks are a stream),

tion Is designed

st and secure

\ndom access to blocks.

128 bits in n.
> 256-bit k'
f 512-bit block.

Improvement #2:

ook more closely

at how Salsa20 works:
initializes 512-bit block
publicly from input n;

adds 256-bit key £;

applies many unkeyed rounds;
adds 256-bit key £.

Take k' as the other 256 bits.
= Skip final £ addition.

Important here that
block is much bigger than &.

Compare to Even—Mansour etc.

What akt

Recall fe
Moving
puts att.

Could tf

1996 Be
Can con
Into sim
attack o
factor <

Warning
“theorer
Correcte



~a function
block from
It Input.

3-bit Input

A-bit nonce
ounter

are a stream),
igned

ure

ess to blocks.

n n.
Wi

”
\s

block.

Improvement #2:

Look more closely

at how Salsa20 works:
initializes 512-bit block
publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;
adds 256-bit key £.

Take k' as t
= Skip fina

ne other 256 bits.

k addition.

Important here that

block Is much bigger than &.

Compare to

Even—Mansour etc.

What about secur

Recall feasible 12¢&
Moving from 128
puts attack very f:

Could there be be

1996 Bellare—Cane
Can convert any g
into similarly effici
attack on original
factor < 2g in suc

Warning: FOCS 1
“theorem” omits f
Corrected in 2005



am),

cks.

Improvement #2:

ook more closely

at how Salsa20 works:
initializes 512-bit block
publicly from input n;

adds 256-bit key £;

applies many unkeyed rounds;
adds 256-bit key £.

Take k' as the other 256 bits.
= Skip final £ addition.

Important here that
block Is much bigger than &.

Compare to Even—Mansour etc.

What about security?

Recall feasible 128-bit attac
Moving from 128 bits to 25t

puts attack very far out of r
Could there be better attacl

1996 Bellare—Canetti—Krawc
Can convert any g-query att
into similarly efficient single-
attack on original cipher, los
factor < 2g in success probz

Warning: FOCS 1996
“theorem” omits factor g.
Corrected in 2005 online ver



Improvement #2:

Look more closely

at how Salsa20 works:
initializes 512-bit block
publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;
adds 256-bit key £.

Take k' as the other 256 bits.
= Skip final k£ addition.

Important here that
block Is much bigger than &.

Compare to Even—Mansour etc.

What about security?

Recall feasible 128-bit attack.
Moving from 128 bits to 256 bits
puts attack very far out of reach.

Could there be better attacks?

1996 Bellare—Canetti—Krawczyk:
Can convert any g-query attack
into similarly efficient single-key
attack on original cipher, losing
factor < 2¢g In success probability.

Warning: FOCS 1996
“theorem” omits factor g.
Corrected in 2005 online version.



ment #2:

re closely

>alsa20 works:

s 512-bit block

from input n;

-bit key k;

nany unkeyed rounds;
-bit key £.

as the other 256 bits.
final k£ addition.

1t here that
much bigger than k.

» to Even—Mansour etc.

What about security?

Recall feasible 128-bit attack.
Moving from 128 bits to 256 bits
puts attack very far out of reach.

Could there be better attacks?

1996 Bellare—Canetti—Krawczyk:
Can convert any g-query attack
into similarly efficient single-key
attack on original cipher, losing

factor < 2¢g in success probability.

Warning: FOCS 1996
“theorem” omits factor g.

Corrected in 2005 online version.

Better s

1. Loss
< (£—1

Compare

2. Allow
for mast
Attack s
< € VS, |
< € vs.
= < €

Combini
deduce ¢
iImmedia



rks:
lock
tn;

7y

yed rounds;

er 256 bits.
dition.

At
rer than k.

-Mansour etc.

What about security?

Recall feasible 128-bit attack.
Moving from 128 bits to 256 bits
puts attack very far out of reach.

Could there be better attacks?

1996 Bellare—Canetti—Krawczyk:
Can convert any g-query attack
into similarly efficient single-key
attack on original cipher, losing

factor < 2¢g In success probability.

Warning: FOCS 1996
“theorem” omits factor g.
Corrected in 2005 online version.

Better security prc

1. Loss factor < g
<(£—1)g+1 for
Compare to £q fro

2. Allow independ
for master key, ses
Attack success prc
< € vs. master cip
< €' vs. session ci
= < € + g€ vs.

Combining 1 and
deduce £-level seci
immediately from



etcC.

What about security?

Recall feasible 128-bit attack.
Moving from 128 bits to 256 bits
puts attack very far out of reach.

Could there be better attacks?

1996 Bellare—Canetti—Krawczyk:
Can convert any g-query attack
into similarly efficient single-key
attack on original cipher, losing

factor < 2¢g in success probability.

Warning: FOCS 1996

“theorem” omits factor g.
Corrected in 2005 online version.

Better security proof, this p:

1. Loss factor < g + 1.
< (£—1)g+ 1 for £ levels.
Compare to g from 2005 B

2. Allow independent cipher
for master key, session keys.
Attack success probability
< € vs. master cipher,

< €' vs. session cipher

= < ¢ + g€’ vs. cascaded ci

Combining 1 and 2:
deduce {-level security
immediately from 2-level sec



What about security?

Recall feasible 128-bit attack.
Moving from 128 bits to 256 bits
puts attack very far out of reach.

Could there be better attacks?

1996 Bellare—Canetti—Krawczyk:
Can convert any g-query attack
into similarly efficient single-key
attack on original cipher, losing

factor < 2¢g In success probability.

Warning: FOCS 1996
“theorem” omits factor g.

Corrected in 2005 online version.

Better security proof, this paper:

1. Loss factor < g + 1.
< (£ —1)g+ 1 for £ levels.
Compare to £q from 2005 BCK.

2. Allow Independent ciphers

for master key, session keys.
Attack success probability

< € vs. master cipher,

< €' vs. session cipher

= < ¢ + g€’ vs. cascaded cipher.

Combining 1 and 2:
deduce {-level security
immediately from 2-level security.



yout security?

asible 128-bit attack.
from 128 bits to 256 bits
ack very far out of reach.

lere be better attacks?

llare—Canetti—Krawczyk:
vert any g-query attack
ilarly efficient single-key
n original cipher, losing

2q In success probability.

- FOCS 1996
n" omits factor g.
d in 2005 online version.

Better security proof, this paper:

1. Loss factor < g + 1.
< (£—1)g+ 1 for £ levels.
Compare to £q from 2005 BCK.

2. Allow Independent ciphers

for master key, session keys.
Attack success probability

< € vs. master cipher,

< €' vs. session cipher

= < € 4 g€’ vs. cascaded cipher.

Combining 1 and 2:
deduce {-level security

immediately from 2-level security.

2-level A
240 quer
Is 1-leve



ity ?

-bit attack.

bits to 256 bits
ar out of reach.

tter attacks?

tti—Krawczyk:
-query attack
ent single-key
cipher, losing

cess probability.

996
actor q.
online version.

Better security proof, this paper:

1. Loss factor < g + 1.
< (£ —1)g+ 1 for £ levels.
Compare to £q from 2005 BCK.

2. Allow Independent ciphers

for master key, session keys.
Attack success probability

< € vs. master cipher,

< €' vs. session cipher

= < ¢ + g€’ vs. cascaded cipher.

Combining 1 and 2:
deduce {-level security
immediately from 2-level security.

2-level AES is bre:
240 queries, space
Is 1-level AES real



y bits
each.

<

zyk:
ack
-key
INg

bility.

sion.

Better security proof, this paper:

1. Loss factor < g + 1.
< (£—1)g+ 1 for £ levels.
Compare to £gq from 2005 BCK.

2. Allow Independent ciphers

for master key, session keys.
Attack success probability

< € vs. master cipher,

< €' vs. session cipher

= < € 4 g€’ vs. cascaded cipher.

Combining 1 and 2:
deduce {-level security

immediately from 2-level security.

2-level AES is breakable wit
240 queries, space 240 time
Is 1-level AES really more se



Better security proof, this paper:

1. Loss factor < g + 1.
< (£ —1)g+ 1 for £ levels.
Compare to £q from 2005 BCK.

2. Allow Independent ciphers

for master key, session keys.
Attack success probability

< € vs. master cipher,

< €' vs. session cipher

= < ¢ + g€’ vs. cascaded cipher.

Combining 1 and 2:
deduce {-level security
immediately from 2-level security.

2-level AES is breakable with
240 querles, space 240, time 248
Is 1-level AES really more secure?



Better security proof, this paper:

1. Loss factor < g + 1.
< (£ —1)g+ 1 for £ levels.
Compare to £q from 2005 BCK.

2. Allow Independent ciphers
for master key, session keys.
Attack success probability

< € vs. master cipher,

< €' vs. session cipher

= < ¢ + g€’ vs. cascaded cipher.

Combining 1 and 2:
deduce {-level security
immediately from 2-level security.

2-level AES is breakable with

240 querles, space 240, time 248
Is 1-level AES really more secure?
No! 1996 Biham “key collisions”
break 240-user 1-level AES

in exactly the same way.

Traditional 1-user metric:
Breaking AES using ¢ queries
costs 2128 by best attack known.

Biham's multi-user metric:
2128 /g by best attack known.



Better security proof, this paper:

1. Loss factor < g + 1.
< (£ —1)g+ 1 for £ levels.
Compare to £q from 2005 BCK.

2. Allow Independent ciphers
for master key, session keys.
Attack success probability

< € vs. master cipher,

< €' vs. session cipher

= < ¢ + g€’ vs. cascaded cipher.

Combining 1 and 2:
deduce {-level security
immediately from 2-level security.

2-level AES is breakable with

240 querles, space 240, time 248
Is 1-level AES really more secure?
No! 1996 Biham “key collisions”

break 240-user 1-level AES
in exactly the same way.

Traditional 1-user metric:
Breaking AES using ¢ queries
costs 2128 by best attack known.

Biham's multi-user metric:
2128 /g by best attack known.

Loss factor < 2 between
2-level AES and 1-level AES
In this multi-user metric.



ecurity proof, this paper:

factor < g + 1.
)g + 1 for £ levels.
> to £g from 2005 BCK.

 independent ciphers

er key, session keys.
uccess probability
master cipher,

session cipher

- g€’ vs. cascaded cipher.

ng 1 and 2:
/-level security
tely from 2-level security.

2-level AES is breakable with

240 queries, space 240, time 248
Is 1-level AES really more secure?
No! 1996 Biham “key collisions”
sreak 249-user 1-level AES

in exactly the same way.

Traditional 1-user metric:
Breaking AES using ¢ queries
costs 2128 by best attack known.

Biham's multi-user metric:
2128 /g by best attack known.

Loss factor < 2 between
2-level AES and 1-level AES
In this multi-user metric.




of, this paper:

4+ 1.
¢ levels.
m 2005 BCK.

ent ciphers
sion keys.
bability

her,

dher

1scaded cipher.

2.
Irity
2-level security.

2-level AES is breakable with

240 querles, space 240, time 248
Is 1-level AES really more secure?
No! 1996 Biham “key collisions”
break 240-user 1-level AES

in exactly the same way.

Traditional 1-user metric:
Breaking AES using ¢ queries
costs 2128 by best attack known.

Biham's multi-user metric:
2128 /g by best attack known.

Loss factor < 2 between
2-level AES and 1-level AES

In this multi-user metric.




per:

pher.

urity.

2-level AES is breakable with

240 queries, space 240, time 248
Is 1-level AES really more secure?
No! 1996 Biham “key collisions”
sreak 240-user 1-level AES

in exactly the same way.

Traditional 1-user metric:
Breaking AES using ¢ queries
costs 2128 by best attack known.

Biham's multi-user metric:
2128 /g by best attack known.

Loss factor < 2 between
2-level AES and 1-level AES

in this multi-user metric.




2-level AES is breakable with

240 querles, space 240, time 248
Is 1-level AES really more secure?
No! 1996 Biham “key collisions”
sreak 249-user 1-level AES

in exactly the same way.

Traditional 1-user metric:
Breaking AES using ¢ queries
costs 2128 by best attack known.

Biham's multi-user metric:
2128 /g by best attack known.

Loss factor < 2 between
2-level AES and 1-level AES
In this multi-user metric.




